Phytophthora capsici infection provides a novel view of disease resistance in peppers

The dissection of R genes and locus Pc5.1 in Phytophthora capsici infection provides a novel view of disease resistance in peppers
Background: Phytophthora capsici root rot (PRR) is a disastrous disease in peppers (Capsicum spp.) caused by soilborne oomycete with typical symptoms of necrosis and constriction at the basal stem and consequent plant wilting.
Most studies on the QTL mapping of P. capsici resistance suggested a consensus broad-spectrum QTL on chromosome 5 named Pc.5.1 regardless of P. capsici isolates and resistant resources. In addition, all these reports proposed NBS-ARC domain genes as candidate genes controlling resistance.
Results: We screened out 10 PRR-resistant resources from 160 Capsicum germplasm and inspected the response of locus Pc.5.1 and NBS-ARC genes during P. capsici infection by comparing the root transcriptomes of resistant pepper 305R and susceptible pepper 372S.
To dissect the structure of Pc.5.1, we anchored genetic markers onto pepper genomic sequence and made an extended Pc5.1 (Ext-Pc5.1) located at 8.35 Mb-38.13 Mb on chromosome 5 which covered all Pc5.1 reported in publications.

A total of 571 NBS-ARC genes were mined from the genome of pepper CM334 and 34 genes were significantly affected by P. capsici infection in either 305R or 372S. Only 5 inducible NBS-ARC genes had LRR domains and none of them was positioned at Ext-Pc5.1. Ext-Pc5.1 did show strong response to P. capsici infection and there were a total of 44 differentially expressed genes (DEGs), but no candidate genes proposed by previous publications was included. Snakin-1 (SN1), a well-known antimicrobial peptide gene located at Pc5.1, was significantly decreased in 372S but not in 305R.

Moreover, there was an impressive upregulation of sugar pathway genes in 305R, which was confirmed by metabolite analysis of roots. The biological processes of histone methylation, histone phosphorylation, DNA methylation, and nucleosome assembly were strongly activated in 305R but not in 372S, indicating an epigenetic-related defense mechanism.

Conclusions: Those NBS-ARC genes that were suggested to contribute to Pc5.1 in previous publications did not show any significant response in P. capsici infection and there were no significant differences of these genes in transcription levels between 305R and 372S.
Other pathogen defense-related genes like SN1 might account for Pc5.1. Our study also proposed the important role of sugar and epigenetic regulation in the defense against P. capsici.
Bioinformatics analysis and identification of genes and molecular pathways in steroid-induced osteonecrosis of the femoral head
Background: Steroid-induced osteonecrosis of the femoral head (ONFH) is a common hip joint disease and is difficult to be diagnosed early. At present, the pathogenesis of steroid-induced ONFH remains unclear, and recognized and effective diagnostic biomarkers are deficient. The present study aimed to identify potentially important genes and signaling pathways involved in steroid-induced ONFH and investigate their molecular mechanisms.

Methods: Microarray data sets GSE123568 (peripheral blood) and GSE74089 (cartilage) were obtained from the Gene Expression Omnibus database, including 34 ONFH samples and 14 control samples. Morpheus software and Venn diagram were used to identify DEGs and co-expressed DEGs, respectively. Besides, we conducted Kyoto Encyclopedia of Genome (KEGG) and gene ontology (GO) pathway enrichment analysis.

We construct a protein-protein interaction (PPI) network through GEO2R and used cytoHubba to divide the PPI network into multiple sub-networks. Additionally, quantitative real-time polymerase chain reaction (qRT-PCR) was performed to verify the bioinformatics analysis results.

Results: A total of 118 intersecting DEGs were obtained between the peripheral blood and cartilage samples, including 40 upregulated genes and 78 downregulated genes. Then, GO and KEGG pathway enrichment analysis revealed that upregulated DEGs focused on the signaling pathways related to staphylococcus aureus infection, leishmaniasis, antigen processing, and presentation, as well as asthma and graft-versus-host disease.

Downregulated genes were concentrated in the FoxO signaling pathway, AMPK signaling pathway, signaling pathway regulating stem cell pluripotency, and mTOR signaling pathway. Some hub genes with high interactions such as CXCR1, FPR1, MAPK1, FOXO3, FPR2, CXCR2, and TYROBP were identified in the PPI network.

The results of qRT-PCR demonstrated that CXCR1, FPR1, and TYROBP were upregulated while MAPK1 was downregulated in peripheral blood of steroid-induced ONFH patients. This was consistent with the bioinformatics analysis.

Conclusions: The present study would provide novel insight into the genes and associated pathways involved in steroid-induced ONFH. CXCR1, FPR1, TYROBP, and MAPK1 may be used as potential drug targets and biomarkers for the diagnosis and prognosis of steroid-induced ONFH.

Cultural Evolution of Genetic Heritability

Behavioral genetics and cultural evolution have both revolutionized our understanding of human behavior-largely independent of each other. Here we reconcile these two fields under a dual inheritance framework, offering a more nuanced understanding of the interaction between genes and culture.

Going beyond typical analyses of gene-environment interactions, we describe the cultural dynamics that shape these interactions by shaping the environment and population structure. A cultural evolutionary approach can explain, for example, how factors such as rates of innovation and diffusion, density of cultural sub-groups, and tolerance for behavioral diversity impact heritability estimates, thus yielding predictions for different social contexts.

  • Moreover, when cumulative culture functionally overlaps with genes, genetic effects become masked, unmasked, or even reversed, and the causal effects of an identified gene become confounded with features of the cultural environment.
  • The manner of confounding is specific to a particular society at a particular time, but a WEIRD (Western, educated, industrialized, rich, democratic) sampling problem obscures this boundedness.
  • Cultural evolutionary dynamics are typically missing from models of gene-to-phenotype causality, hindering generalizability of genetic effects across societies and across time.
  • We lay out a reconciled framework and use it to predict the ways in which heritability should differ between societies, between socioeconomic levels and other groupings within some societies but not others, and over the life course.
  • An integrated cultural evolutionary behavioral genetic approach cuts through the nature-nurture debate and helps resolve controversies in topics such as IQ.

Add a Comment

Your email address will not be published.